
 DSIT/CSE/III YEAR/COURSE PLAN/CS8602-CD Page 1 of 7

COURSE PLAN

Subject code: CS8602 Branch/Year/Sem/Section: B.E CSE/III/VI

Subject Name: Compiler Design Batch:2017-2021

Staff Name:S.SRILEKAA Academic year:2019-2020

COURSE OBJECTIVE

 To learn the various phases of compiler.
 To learn the various parsing techniques.
 To understand intermediate code generation and run-time environment.
 To learn to implement front-end of the compiler.
 To learn to implement code generator.

TEXT BOOK:

T1. Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D. Ullman, Compilers: Principles, Techniques and Tools‖, Second
Edition, Pearson Education, 2009.

REFERENCES:

R1.Randy Allen, Ken Kennedy, Optimizing Compilers for Modern Architectures: A Dependence based Approach, Morgan
Kaufmann Publishers, 2002.
R2. Steven S. Muchnick, Advanced Compiler Design and Implementation‖, Morgan Kaufmann Publishers - Elsevier Science,
India, Indian Reprint 2003.
R3. Keith D Cooper and Linda Torczon, Engineering a Compiler‖, Morgan Kaufmann Publishers Elsevier Science, 2004.
R4. V. Raghavan, Principles of Compiler Design‖, Tata McGraw Hill Education Publishers, 2010.
R5. Allen I. Holub, Compiler Design in C‖, Prentice-Hall Software Series, 1993.

WEB RESOURCES

W1: http://nptel.ac.in/syllabus/syllabus_pdf/106108052.pdf
W2:www.wikipedia.org
W3: http://studentsfocus.com/

TEACHING METHODOLOGIES:

 BB - BLACK BOARD

 VIDEO - VIDEO TUTORIAL

 PPT - POWER POINT PRESENTATION

 DSIT/CSE/III YEAR/COURSE PLAN/CS8602-CD Page 2 of 7

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CS8602 COMPILER DESIGN L T P C

 3 0 2 4

1. UNIT I INTRODUCTION TO COMPILERS 9

Structure of a compiler – Lexical Analysis – Role of Lexical Analyzer – Input Buffering –Specification of Tokens –
Recognition of Tokens – Lex – Finite Automata – Regular Expressions to Automata – Minimizing DFA.

2. UNIT II SYNTAX ANALYSIS 12

 Role of Parser – Grammars – Error Handling – Context-free grammars – Writing a grammar –Top Down Parsing -
 General Strategies Recursive Descent Parser Predictive Parser-LL(1)Parser-Shift Reduce Parser-LR Parser-LR
 (0)Item Construction of SLR Parsing Table -Introduction to LALR Parser - Error Handling and Recovery in Syntax
 Analyzer-YACC.

3. UNIT III INTERMEDIATE CODE GENERATION 8

 Syntax Directed Definitions, Evaluation Orders for Syntax Directed Definitions, Intermediate Languages: Syntax
 Tree, Three Address Code, Types and Declarations, Translation of Expressions, Type Checking.

4. UNIT IV RUN-TIME ENVIRONMENT AND CODE GENERATION 8

 Storage Organization, Stack Allocation Space, Access to Non-local Data on the Stack, Heap Management - Issues in
 Code Generation - Design of a simple Code Generator.

5. UNIT V CODE OPTIMIZATION 8

 Principal Sources of Optimization – Peep-hole optimization - DAG- Optimization of Basic BlocksGlobal Data Flow
 Analysis - Efficient Data Flow Algorithm.

 DSIT/CSE/III YEAR/COURSE PLAN/CS8602-CD Page 3 of 7

 TOTAL: 45 PERIODS

Topic
No

Topic Name
Books For
reference

Page No
Teaching

Methodology

No of
periods

required

Cumulati
ve

periods

UNIT I INTRODUCTION TO COMPILERS (9)

1. Structure of a compiler T1 4-12 BB 1 1

2.
 Lexical Analysis, Role of Lexical
Analyzer

T1 109-114 BB 1 2

3. Input Buffering T1 115-116 BB 1 3

4. Specification of Tokens T1 116-125 BB 1 4

5. Recognition of Tokens T1 130-136 BB 1 5

6. Lex T1 140-144 BB 1 6

7. Finite Automata T1 147-149 BB 1 7

8. Regular Expressions to Automata T1 152-166 BB 1 8

9 Minimizing DFA T1 180-186 BB 1 9

LEARNING OUTCOME:
At the end of unit , the students will be able to

 Know the fundamentals of Compiler Design.
 Understand the structure of a compiler.
 Gain the knowledge about Lexical Analyser.

UNIT II SYNTAX ANALYSIS (12)

1 Role of Parser – Grammars T1 191-193 BB 1 10

2
Error Handling – Context-free
grammars

T1 194-206 BB 1 11

3 Writing a grammar T1 209-215 BB 1 12

4 Top Down Parsing T1 217-219 BB 1 13

5
General Strategies Recursive
Descent Parser Predictive Parser

T1 219-220 BB 1 14

6 LL(1)Parser T1 222-228 BB 1 15

7 Shift Reduce Parser T1 236-238 BB 1 16

8 LR Parser T1 241-242 BB 1 17

9
LR (0)Item Construction of SLR
Parsing Table

T1 242-252 BB 1 18

10
Introduction to LALR Parser
Analyzer

T1 266-270 BB 1 19

11
Error Handling and Recovery in
Syntax

T1 281-285 BB 1 20

12 YACC T1 287-295 BB 1 21

 DSIT/CSE/III YEAR/COURSE PLAN/CS8602-CD Page 4 of 7

LEARNING OUTCOME:
At the end of unit , the students will be able to

 Define the Role of Parser.
 Understand the design principles of syntax analyzer.
 Gain the knowledge about types of the parser.

UNIT – III INTERMEDIATE CODE GENERATION (8)

1 Syntax Directed Definitions

T1 303-306 BB 1 22

2
Evaluation Orders for Syntax
Directed Definitions

T1 309-314 BB 1 23

3 Intermediate Languages T1 357-358 BB 1 24

4 Syntax Tree T1 358-360 BB 1 25

5 Three Address Code, T1 363-369 BB 1 26

6 Types and Declarations T1 370-376 BB 1 27

7 Translation of Expressions T1 378-383 BB 1 28

8 Type Checking T1 386-395 BB 1 29

LEARNING OUTCOME:
At the end of unit , the students will be able to

 Understand the concept of SDD.
 Gain knowledge about Code generation.
 Define the Code optimization.

UNIT IV RUN-TIME ENVIRONMENT AND CODE GENERATION (8)

1 Storage Organization T1 427 BB 1 30

2 Stack Allocation Space T1 430-438 BB 1 31

3 Stack Allocation Space T1 -- BB 1 32

4
Access to Non-local Data on the
Stack T1 441-449 BB 1 33

5 Heap Management T1 452-460 BB 1 34

6 Issues in Code Generation T1 505-511 BB 1 35

7 Design of a simple code generator T1 542-547 BB 1 36

8 Design of a simple code generator T1 -- BB 1 37

LEARNING OUTCOME:
At the end of unit , the students will be able to

 Understand the concept of Storage Organization.
 Known about the code generator.

 DSIT/CSE/III YEAR/COURSE PLAN/CS8602-CD Page 5 of 7

UNIT V CODE OPTIMIZATION (8)

1 Principal Sources of Optimization T1 512-516 BB 1 38

2 Principal Sources of Optimization T1 -- BB 1 39

3 Peep-hole optimization T1 549-582 BB 1 40

4 DAG T1 533-535 BB 1 41

5 Optimization of Basic Blocks W3 533-541 BB 1 42

6 Basic Blocks Examples W3 525-531 BB 1 43

7 Global Data Flow Analysis W3 -- PPT 1 44

8 Efficient Data Flow Algorithm. W3 -- PPT 1 45

LEARNING OUTCOME:
At the end of unit , the students will be able to

 Understand the concept of Optimization.
 Gain knowledge about Risk management

 Understand the concept of Linux System
 Know about the concept of Mobile OS - iOS and Android.
 Understand the concept of Kernel Modules.

COURSE OUTCOME

At the end of the course, the student should be able to:

 Understand the different phases of compiler.
 Design a lexical analyzer for a sample language.
 Apply different parsing algorithms to develop the parsers for a given grammar.
 Understand syntax-directed translation and run-time environment.
 Learn to implement code optimization techniques and a simple code generator.
 Design and implement a scanner and a parser using LEX and YACC tools.

CONTENT BEYOND THE SYLLABUS

Various code optimization technique and its complexity

CONTINUES INTERNAL ASSESSMENT DETAILS

ASSESMENT NUMBER I II MODEL

(UNIT) (1st & 2nd units) (3rd & 4th units) (units 1-5)

ASSIGNMENT DETAILS

ASSIGNMENT NUMBER I II III

TOPIC NUMBER FOR REFERENCE 1-18 (1st & 2nd units) 19-36 (3rd & 4th units) 1-45 (units 1-5)

DEAD LINE

 DSIT/CSE/III YEAR/COURSE PLAN/CS8602-CD Page 6 of 7

ASSIGNMENT
NUMBER

BATCH DESCRIPTIVE QUESTIONS/TOPIC
(Minimum of 8 Pages)

I

B1 (R.Nos 1-18)

1. Analysis-Synthesis model of Compilation
2. Various Phases of a Compiler
3. Tool based approach to Compiler Construction

B2 (R.Nos 19-36)

1. Lexical Analysis
2. Parser and Symbol Table,Token
3. Lexeme and Patterns

B3 (R.Nos 37-302)

1. Error Reporting and Implementation
2. Regular definition
3. Transition diagrams

II

B1 (R.Nos 1-18)

1. LEX
2. Syntax analysis
3. Context free Grammers

B2 (R.Nos 19-36)

1. Top Down Parsing
2. Recursive Descent Parsing
3. Bottom Up Parsing

B3 (R.Nos 37-302)

1. LR Parsers (SLR, LALR, LR)
2. YACC
3. L- and S-Attributed Definitions

III

B1 (R.Nos 1-18)

1. DAG Representation of Programs
2. Code Generation from Dags
3. Peep Hole Optimization

B2 (R.Nos 19-36)

1. Type Checking ,Run Time System
2. Intermediate Code Generation
3. Code Generation and Instruction Selection

B3 (R.Nos 37-302)

1. Global Dataflow Analysis
2. Code Improving Transformations
3. Data Flow Analysis of Structured Flow Graphs

 DSIT/CSE/III YEAR/COURSE PLAN/CS8602-CD Page 7 of 7

LIST OF EXPERIMENTS:

1. Develop a lexical analyzer to recognize a few patterns in C. (Ex. identifiers, constants, comments, operators
etc.). Create a symbol table, while recognizing identifiers.
2. Implement a Lexical Analyzer using Lex Tool
3. Implement an Arithmetic Calculator using LEX and YACC
4. Generate three address code for a simple program using LEX and YACC.
5. Implement simple code optimization techniques (Constant folding, Strength reduction and Algebraic
transformation)
6. Implement back-end of the compiler for which the three address code is given as input and the 8086 assembly
language code is produced as output.

Ses
sion

No

Experimental concepts to be covered
Teachin

g Aid
No.
of
Hour
s

Cumulativ
e No. of
Hours

1

 Development of a lexical analyzer to recognize a few patterns in C.

PP
T

2 5

2 Implementation of Lexical Analyzer using Lex Tool. 2 10

3
 Implementation of Calculator using LEX and YACC.

2 15

4

 Implementation of three address code using LEX and YACC
2 20

5

 Implementation of Simple Code Optimization Techniques.
2 25

6

 Implementation of back end of the compiler.
2 30

OUTCOMES:

Upon the completion of Compiler Design practical course, the student will be able to:

1. Understand the working of lex and yacc compiler for debugging of programs.

2. Understand and define the role of lexical analyzer, use of regular expression and transition diagrams.

3. Understand and use Context free grammar, and parse tree construction.

4. Learn & use the new tools and technologies used for designing a compiler.

5. Develop program for solving parser problems.

6. Learn how to write programs that execute faster.

PREPARED BY VERIFIED BY

S.SRILEKAA, AP/CSE HOD/CSE

APPROVED BY

PRINCIPAL

